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ANALYSIS OF STRUCTURAL RESPONSE WITH 
D IFFERENT FORMS OF DAMP I NG 

SUMMARY 

Five different analytical representations of the damping force are in- 
vestigated to provide a basis for deciding what type may exist in a given structural 
system. 
a nonlinear spring force in a single-degree-of-freedom representation of the 
structural response. 

These representations of the damping force are incorporated along with 

Energy loss per cycle calculations provide one basis for  comparison. 
The dependence of energy losses on amplitude and frequency for  sustained and 
transient response is shown. For sustained oscillations, a ratio of the energy 
loss for each damping force to that for viscous damping is plotted as a function 
of amplitude and frequency. Spring plus damping force as a function of displace- 
ment yields hysteresis loops of different shapes for different damping forces., 
Also, by selecting reasonable numerical values, transient displacement versus 
time curves and hysteresis loops a re  obtained by numerical integration on the 
digital computer. 

Approximate analytical solutions for each of the five cases are also shown, 
and equations for  the displacement versus 'time response envelope are obtained. 
Considerable differences in the response envelopes are observed using the same 
numerical coefficients in each case. 

Energy loss calculations along with the displacement versus time response 
envelope and hysteresis loops provide bases for deciding what type of damping 
may exist in a structural system when observing experimental results. 

I NTRODU CT I ON 

In the present analysis and design of missiles, the damping is generally 
considered to be viscous damping. When considering the complex system as a 
series of lumped masses, the damping force on each generalized mass is con- 
sidered proportional to velocity. When exciting the first mode of vibration, the 
modal damping is also taken as a function of velocity. A s  missile designs 
become more complicated, the multiple stage interfaces can produce s l ip  
damping, and large deflections can cause nonlinear stiffness and damping. 

I 
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The investigation of different analytical representations of damping has 
lagged far behind efforts to obtain a better representation of stiffness. To im- 
prove this situation, five different forms of damping are investigated herein. 
These five functions are each separately included in  a single-degree-of-freedom 
equation with a nonlinear cubic spring force. The step input as well as the free 
oscillation condition is studied. 

Three different criteria are used to study the five different damping 
cases. Energy loss per cycle is.shown to change from case to case with ampli- 
tude and frequency: 
calculated. Secondly, hysteresis loops can be used to compare each case. 
Finally, numerical results are obtained by numerical integration on the digital 
computer. The envelope of each displacement versus time curve is calculated 
by first obtaining an approximate solution for  the nonlinear differential equation. 

Steady state as well  as transient energy losses are 

To obtain analytical representations of slip damping, it is necessary to 
match experimental hysteresis loops with those produced analytically. 
hysteresis loops for each analytical representation of the damping force shown 
herein can be correlated with current experimental efforts. 

Thus, 

ANA LYT I CA L RE PRES ENTAT I ON OF D A M  P I NG 

Consider the differential equation of motion, 

M + g ( z ,  x) + h(x) = f ( t )  , d e  

where M is the generalized mass,  x is the generalized mass  displacement, 
g is the damping force function, h is the spring force function, and f is the 
input force. Only one type of spring force function, given by 

is considered. 
tion of a nonlinear spring [ I ] .  In this instance, E is negative. With E = 0, 

This function is plotted in Figure I and is a typical representa- 
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/ 
FIGURE I. NONLINEAR SPRING FORCE 

the spring force is linear with a spring stiffness K. Point A on Figure I may 
be thought of as the point of instability in the spring force and may be used to 
select the value of e .  For  this study, the value 6 = - 1/3 is used. 

The free response and the response to a step input are considered. Thus, 

f ( t )  = 0 (free) 

f ( t )  = P  (step) . 

The purpose of this study is to investigate different forms of the damping 
force function g( dx/dt, x) . A study recently completed by this author [ 2 ] ,  
discusses different sources of damping and shows different analytical repre- 
sentations of damping. The five different damping functions considered in this 
report  are listed in Table I. 
function. 

Also shown is the possible source of each damping 
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TABLE I. ANALYTICAL REPRESENTATION O F  DAMPING 

Case 

I 

II 

III 

Iv 

V 

C I  dx 
dt 

(q 
dx 
dt 

Source 

Viscous o r  
environmental 

Material  o r  
slip 

Environmental 

Material  

To study the systems which can be described by equation ( I ) ,  it is 
desirable to normalize the independent variable "time. '' First substitute 
equation (2) into equation (I) and divide by mass M to obtain 

fo r  the step input. To normalize let 

4 
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where e is the linear circular frequency. Obtaining derivatives with 
respect to T and dividing by K/M gives 

.. i P 
K K x + - g( 2, x) + x + €2 = - 9 

where 

d2x z- and % =  . d x  x =  - 
dT 

The damping force terms shown in Table I are expressed in terms of 
the normalized time as follows 

i 
K - g( k, x) = 9 m c2 

- 2 ( s g n  k) M 

c1 (I +axZ)k , V 
c 4 T M  

5 



The units of x are consistent with the other units. With mass  in slugs and K 
in pounds per foot, the C's are in terms of pounds, feet, and seconds, and x 
is the displacement in feet. Any other set of units is equally applicable. 

Three different but related approaches for studying similarities of , 
and differences between, these damping terms are included in the following 
sections. 

ENERGY LOSSES AND HYSTERES I S  CURVES 

A useful technique in studying different analytical representations of 
damping is to make a comparison of energy losses per cycle, AW/cycle. 
value, AW/cycle, is obtained by integrating the spring plus damper force €imes 
the displacement over a vibration cycle. 
cycle is zero; thus, 

The 

The spring force integrated over a 

E = J  cycle L g ( % , x ) J d x  . 
cycle 

This equation is changed to an integral over time, o r  

E cycle = s  [ g ( z , x ) ] z d t  . 
period. 

Some authors prefer to use the energy content of the vibrating system, which 
is the energy loss per  cycle divided by twice the vibration energy, 2W; that is, 

AW/cgcle - AW/cycle - 
2w 6 =  

6 



First consider the input force f ( t) to be a type which maintains a 
constant response amplitude. The response may be approximated by 

x = A sin(wt - , (8)  

where A is the amplitude, u is the frequency, and @ is the phase angle. The 
amplitude and frequency may be determined by using the method' of Klotter [ 31. 
The velocity becomes 

( 9) - =  dx Aw cos(wt-  @) . 
dt 

Substituting any of the damping functions of Table I into equation (6) , 
with displacement and velocity given by equations (8) and (9)  , the energy loss 
per cycle is obtained by integrating between the limits of @/u and 27r + @/a. 
The energy content is similarly obtained from equation (7 ) .  The results for 
each damping function a re  shown in Table 11. 

TABLE II. ENERGY LOSSES - SINUSOIDAL RESPONSE 

Case 

I 

II 

111 

N 

V 

AW/cycle 
- 

C pA2w 

2c& 

C ~ A W  
3 

4 - C3A3w 
3 

C p A 2 w  + 7r 4 A4wc p 

6 = AW/2W 

C l n  
MU 

2Cn 
MU2 

8CqA 
3M 

4C3A 
MU 

CJT- + C ~ T C X A ~  
MU 4Mw 

7 



As shown by this table, various damping functions in effect make the energy loss 
dependent on different powers of amplitude and frequency. 

An interesting comparison of energy losses is obtained by defining an 
energy loss ratio 

AW 

AW 
n R = -  
V 

The numerator, Awn, is the energy loss per  cycle for  any nonlinear damping 

function and the denominator, AW , is the energy loss  per cycle for viscous 

damping, Case I. 
ratios are shown in Table III. 

V 

This ratio would be the same using energy content, 6. These 

TABLE III. ENERGY LOSS RATIOS 

Case 

I 

11 

m 

Iv 

V 

R = AWn/AWv 

1 . 0  (reference) 

2Co 
c pw 

8CxAw 
3 c p  

4C3A 
ci= 

CYA2 i + -  4 

R, = A W ~ / A W ~ ~  

measured C, C, 
reference Ci 

- 
ir 

4CsA 

'ir" 

CYA2 I + -  4 

The commonly employed method for experimental determination of 
missile damping presupposes viscous damping, Case I. The results show different 
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values of Ci as amplitude and/or frequency vary. This suggests that possibly 
some other form of damping would be more appropriate. Energy loss ratios 
provide a possible means of selecting a more appropriate damping term. 
Defining one viscous coefficient as the reference , 

ir ’ C,( reference) = C 

a reference energy loss ratio is obtained as 

n 

v r  

AW 

r AW 
R =- 

where 

These reference ratios are also shown in Table III. 

The reference energy loss ratios that are a function of frequency appear 
in Figure 2; those that are a function of amplitude are shown in Figure 3. 
Selecting one experimentally determined value of the viscous damping coefficient 
as the reference value, a plot of C,I/Cir is determined as a function of both 
amplitude and frequency. Comparing this plot with those of Figures 2 and 3 
may indicate a better analytical representation of the damping coefficient. 
coefficient would then be constant. 
existing experimental data and should be investigated in more detail. 

The 
This suggested method is to be used with 

Relatively little information is available on energy losses in transient 
systems. For these systems the response can be approximated by 

x = A, + Ae&sin(wt - @ )  . (12) 

9 
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t 2  
Rr 

I 

I 

2 co - 
irx 

t 

(a) Case 11 

I 

(b) Case III 

FIGURE 2. ENERGY LOSS RATIO VERSUS FREQUENCY 
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f 
R* 

i 

3 C ~ r A  irA 

(a) Cases I11 & IV 

A- 

t 
r R 

a 
i +  4 

i 

8 C z ~  4c3 

(b) Case V 

I 
I 
I 

. -  
I 

I A- 
- 1  

FIGURE 3. ENERGY LOSS RATIO VERSUS AMPLITUDE 



The constant A0 is introduced for  those systems which do not vibrate about the 
null, x = 0, position. The exponential exponent, u, must be negative for 
decaying vibrations and the final steady state (t  - 4 amplitude is A,,. A 
method for determining A,, A ,  u, and w in terms of the system parameters 
and initial conditions is shown in the Appendix and in the following section. The 
velocity is obtained from the derivative of equation ( 12) as 

The study of transient energy losses includes the following refinements 
.not previously considered : 

1. The effect of a decay in the response 

2. The effect of a constant nonzere steady state amplitude 

The input forcing functions used are those given in equation ( 3 ) .  With the free 
vibration A, = 0, the system is considered to be given an initial displacement and 
released. With the step input f (t) = P, the constant amplitude is considered to 
be positive. 

Substituting the various damping functions from Table I into equation ( 6 ) ,  
with displacement and velocity given by equations (12) and ( 13), respectively, 
the transient energy loss is obtained for each function. Care must be taken to 
integrate over the proper limits to ensure that absolute values and signs are 
correct. The results are separated into two parts. The transient energy losses 
for  free response are shown in Table IV for one cycle starting at time T. The 
transient energy losses for  step input are shown in Table V for one cycle 
starting at time T. 

The transient energy losses in Table IV will reduce to those in Table II 
when u = 0. In general, &e transient energy lossbs become increasingly im- 
portant the greater the ratio u/w.  For most applications with slow decay and 
large frequency, the assumption of a steady vibration does not yield large energy 
loss errors .  However ,. as missiles become more flexible and slip joints at stage 
interfaces increase the rate of vibration decay, the transient energy losses should 
be considered. The transient energy losses of Tables IV and V vary with ampli- 
tude and frequency in the same way as in Table II. 

12 



TABLE IV. TRANSIENT ENERGY LOSSES - FREE RESPONSE 

Case 
~ 

I 

11 

I11 

IV 

V 

AW/Cycle 

( 3an )2 02[2 ++y + 9(:)4] 
C2A3e3aT e"-' + i 

3 [i + (31 



TABLE V. TRANSIENT ENERGY LOSSES - STEP RESPONSE 

Case 

I 

II 

III 

IV 

V 

I 



The transient energy losses of Table V vary considerably from those 
in Table IV when the damping term involves the displacement, x. 
the dependence of energy losses on the average displacement which can be 
related to average stress in many problems. 

This shows 

Related to the energy loss is the force versus displacement, hysteresis 
loop, curve. In fact, the energy loss per cycle is the area enclosed by the 
hysteresis loop in the same cycle. ‘To obtain a better understanding of the dif- 
ferent damping terms of Table I, these hysteresis loops are considered. 

The force is the spring plus damping force’ from equations ( I)  and (2) : 

force = g (g , x )  + K(x + Exs) . 

The sinusoidal displacement and velocity of equations ( 8) and ( 9) are substi- 
tuted into this equation, and force may be plotted as a function of displacement 
x. The result is either a single or double loop curve. Those cases that cause 
a single loop are sketched in Figure 4. Those which produce a double loop are 
sketched in Figure 5. 

The effect of slip damping is commonly obtained as a force-displacement 

This in turn will  allow slip damping 
hysteresis loop. A combination of curves given in Figures 4 and 5 can be used 
to approximate the slip damping condition. 
to be described analytically. 

TRANS IENT RESPONSE 

Another method for  comparing various analytical representations of the 
damping force is to observe displacement versus time curves and in particular 
the envelope of these curves. This requires a solution of each equation obtained 
by substituting equations (5) into equation ( 4 ) .  An approximate solution is ob- 
tained in the form 

(15) 
ur x = A o f A e  s in(w.r-$)  

which is the same form used to obtain transient energy losses (equation ( 12) ) . 
A numerical integration solution of each equation is also obtained. 

15 



Force 

(a) Case IlI 

I Force 

(b), Cases I Q V 

FIGURE 4. SINGLE HYSTERESIS LOOPS 



Force 

x +  EX3 

X 

I 

(a) Case I1 

Force 

X 

(b) Case IV 

FIGURE 5. DOUBLE HYSTERESIS LOOPS 
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A method for obtaining the coefficients A. and A, the exponent (T, the 
normalized frequency w ,  and phase angle C#I is shown in the Appendix. Two 
inputs to each system are considered, as shown in equation ( 3). 

For the step input, P/K, the exponent (T and the frequency w are ob- 
tained from equations (A;2), (A. 6 )  and (A. 7) with xlo = 0 and xzO = A,,. The 
constant amplitude A, is obtained from equation (A. I O ) .  The amplitude A and 
phase angle Cp are avhlable from equation (A. 14). Shown in Table VI are the values 
of u and w as well as the steady st&e amplitude equation for each case. 

For free oscillations, P = 0, the exponent u and the frequency w are 
also obtained from equations (A. 21, (A.  6) and (A. 7).  However, in this instance, 
the values of xio = 0 and xz0 = x d 2  are found to yield the best results. The 
constant amplitude A. is zero. The amplitude A and phase angle @ are available 
from equation (A.  15). Table VI1 shows the values of u and w for free oscilla- 
tions resulting from an initial displacement, xo. 

With the approximate solutiot known, equation ( 1 5 ) ,  the envelope of the 
displacement, x ,  versus nondimensional time, T ,  curve is obtained for each case. 
This is done by defining maximum and minimum values of x and the corresponding 
times for each. Connecting these points by a continuous curve shows the envelope 
of the transient response. Maximum and minimum values are shown for the 
step input in Table VIII and for the free oscillations in Table M. For Case 11 

and 

(sgn  x)(sgn k) = - I . 
w = w2 

A o = A ,  

For the velocity squared damping, Case 111, the approximate analytical solution 
shows no decay and is not a good approximation for this case. 

-1 8 



TABLE VI. SOLUTION EXPONENT, FREQUENCY, AND STEADY STATE AMPLITUDE - STEP INPUT 

I - 
Case (T w 
r 

I 

11 

111 

Iv 

V 

- CI 

2 dKM 

0 

0 

( i  + @A;) 
2 dlicM 

1 $ ( s g n x ) ( s g n k )  C 

I 

S. S. Amplitude Equation 



N 
0 TABLE VII. SOLUTION EXPONENT AND FREQUENCY-FREE OSCILLATION 

Case 

I 

11 

III 

Iv 

V 

-C, 

2 & i E  

0 

0 

-C, ( i +  9) 
2 &  

L 

ih 



TABLE VIII. MAXIMUM AND MINIMUM x VERSUS T VALUES - STEP INPUT 

Case 
~~ 

1, IV, v 

[, IV, v 

11 

II 

111 

111 

~ a t x  orx max min 

n r  
w 

X or x max min 

(TAT 

X min = Ao' ( i  - e * ) 
X = 2A01 +(Aol - Am)n max 

X = 2Ao max 

X = o  min 

Cases 

[, IV, v 

[, IV, v 

11 

I1 

111 

111 

na - 
w 

X =xoe w max 

ann - 
X = -xoe w m in 

n 
X max = xo( 5)  
X m in = -xo ($ 

n is 

odd 

even 

even 

even 

- 

- 

TABLE E. MAXIMUM AND MINIMUM x VERSUS T VALUES - 
FREE OSCILL'ATION 

n is 

even 

odd 

even 

odd 

- 
- 

21 



Numerical results are presented in Figures 6 through 35. These results 
are presented for  each of the five cases as two curves for two values of damping 
(approximately two percent and ten percent of critical) with the step input, plus 
two curves with the same two values of damping but with only an initial displace- 
ment input. Two additional curves are included for  each case (with approxi- 
mately ten percent of critical damping) showing the spring plus damper force 
versus displacement, o r  hysteresis loops, for  the same two inputs. The solid 
curves represent the fourth-order Runge-Kuta numerical integration on the 
digital computer. The dashed cur ies  are the results of the approximate 
analytical solution shown as an envelope of the transient response. Table X is 
included as a summary of Figures 6 through 35. 

The analytical and numerical integration results for displacement versus 
nondimensional time are in good agreement. 
for  Case 111. Horizontal deviations of maximum and minimum values, comparing 
analysis with numerical integration, indicate e r r o r s  in the frequency w. Vertical 
deviations indicate e r r o r s  in the amplitude A and the exponent u. Considerable 
difference in the response envelope is noted when the same coefficients are used 
with different analytical representations of damping. 

The one exception is the results 

CONCLUSIONS 

In this study, a single-degree-of-freedom representation of the mass 
displacement permits the investigation of different analytical representations 
of damping forces. For  different damping forces, the energy loss per cycle 
has different powers of amplitude and frequency. . Transient energy losses are 
considerably different than steady state losses when the vibration decay is 
large and the frequency is small. For  damping forces dependent on amplitude, 
the mean response amplitude affects the energy loss per  cycle. 

Different damping forces yield different hysteresis loops. It should be 
possible with a series of damping terms to approximate most experimentally 
determined hysteresis loops. Some of these hysteresis loops are dependent 
on mean vibration amplitude. 

Differences occur in the amplitude versus time curve envelope using the 
same equation except for  the dependence of damping on displacement and 
velocity. In some cases, the differences are very pronounced. A three-term . 
exponential series solution of the nonlinear differential equation can be used to 
obtain these curves and their envelopes. 
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It appears that a single experimental amplitude versus time envelope 
cannot be attributed to one form of damping without further investigations. In 
other words, the magnitude of the damping coefficient and the damping function 
may be simultaneously changed to yield.curves which are very similar. 

Possible procedures for determining the true analytical representation 
of damping force by one term or a series of terms are as follows: 

Energy losses could be taken as a power series in amplitude and frequency 
with coefficients determined experimentally. The correlation of existing 
viscous damping information with energy loss ratios appears feasible. 
And, finally, the actual shape of the transient amplitude versus the 
response envelope can be correlated with those generated by different 
analytical representations of damping. 

George C. Marshall Space Flight Center 
National Aeronautics aryd Space Administration 

Huntsville, Alabamtt, October 17, i 966 
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FIGURE 8. DISPLACEMENT VERSUS NONDIMENSIONAL TIME - CASE i 
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FIGURE 14. DISPLACEMENT VERSUS -NONDIMENBIONAL TIME - CASE II 
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FIGURE 15. DISPLACEMENT VERSUS NONDIMENSIONAL TIME - CASE 11 
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FIGURE 20. DISPLACEMENT VERSUS NONDIMENSIONAL TIME - CASE I11 
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FIGURE 21. DISPLACEMENT VERSUS NONDIMENSIONAL TIME - CASE 111 
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FIGURE 24. DISPLACEMENT VERSUS NONDIMENSIONAL TIME - CASE IV 
x3 

(X+ 0.04 Ixl j ,  + x - - = 0 . 2 )  
3 

X 

0 10 20 30 40 50 
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FIGURE 32. DISPLACEMENT VERSUS NONDIMENSIONAL TIME - CASE V 
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1 2 P  TABLE X. SUMMARY O F  CURVES (2 +E g(k, X) f x - -  = -  ) 3 K  

I 0.2 

Case 

0 1 

I 

I 

I 

I 

I 

I 

I1 

II 

II 

II 
II 

II 

111 

III 

III 

111 

Ill 

111 

IV 

IV 

Iv 
IV 

IV 

IV 

V 

V 

V 

V 

V 

V 

* 
Plot '  

x vs 7 

x VS 7 

x vs 7 

x vs 7 
F vs x 

F vs x 

x VS 7 

x vs 7 

x vs 7 

x vs 7 

F vs x 

F vs x 

x vs 7 

x vs 7 

x vs 7 

x vs 7 

F vs x 

F vs x 

x vs 7 

x vs 7 

x vs 7 

x vs 7 

F vs x 

F vs x 

x vs 7 

x vs 7 

x vs 7 

x vs 7 

F vs x 

F vs x 

0 

0 

Damping 
Coefficient 

0.  04 

0. 2 

0.  04 

0.2 

0.2 

0.2 

0.04 

0.2 

0. 04 

0. 2 

0.2 

0.2 

0. 04 

0.2 

0. 04 

0. 2 

0.2 

0.2 

0. 04 

0. 2 

0. 04 

0. 2 

0.2 

0.2 

CY = 1.0 

CY = 1.0  
0.100 

a = 1.0 
0.0392 

CY = 1.0  
0.100 

a = 1.0 
0.100 

a = 1.0 
0.100 

~ 0.0392 

~ 

Percent  
Critical 

2 

10 

2 

i o  
10 

10 

2 

10 

2 

i o  
i o  
i o  
2 

i o  
2 

10 

10 

10 

2 

10 

2 

10 

i o  
10 

2 

10 

2 

10 

10 

10 
I 

~ 

XO 

0 

0 

0.2 

0. 2 

0 

0.2 

0 

0 

0.2 

0 .2  

0 

0.2  

0 

0 

0.2 

0.2 

0 

0.2 

0 

0 

0 . 2  

0.2 

0 

0.2 

0 

0 

0. 2 

0.2 

0 

0.2 

* 
IF = spring plus damper force 
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APPENDIX 
APPROXIMATE SOLUTION FOR TRANSIENTS 

The approximate solution of the nonlinear differential equation of 
equation (4 )  is given as an exponential ser ies  

This series when substituted into equation (4) yields an equation with some 
terms which are single series and others which are multiple series. Equating 
coefficients of single series terms yields a set of basic exponents ai  and cy2. 

Other exponents are linear combinations of the basic exponents. The constant 
term A0 is obtained by letting T -00 and equating the remaining terms. 
Remaining coefficients are obtained bv evaluating m initial conditions from 
equation (4) and setting these equal to the derivatives of equation (A.1) evaluated 
at T = 0. This method is discussed in much more detail by the author 141. 
Only sufficient information is included to permit the approximate solution of 
the equations being studied. 

Essentially the method outlined is equivalent to expressing the original 
equation, equation ( 4 ) ,  as two first-order equations 

x2 = x i  
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where xz = x and both xi and xz are expressible as a series. Equations (A. 2) 
can be expanded in a Taylor's series about some value xi = xio, x2 = xZ0. Thus, 

afi 
+ -  

8x2 

Since xi and xz 

(xz - xzO) + higher order terms 
xi0 9 xz 0 

i = 1 , 2 .  

are exponential series 

(A.  3)  

which are the variational equations or  the linear approximations. Substituting 
the second into the first and realizing 22 = ( yields a' = a". Therefore, 
in matrix notation 

Expressing equation (A .  3) in matrix notation and substituting equation 
(A .  4) into this equation gives 
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- I  
%?- 
ax, 1'1 x2 0 

( A .  5) 

Terms not involving xi and x2 should be identically satisfied by the proper 
choice of xio and xzo. 
such set. 
to satisfy equation (A. 5). Thus, 

The final steady values xio = 0 and x20 = A0 form one 
Therefore, the determinate of the coefficient matrices must be zero 



3 

which yields 

af af + - - = o  3~ ax, axi 

where partial derivatives are evaluated at xio, 'xzP Solving this equation yields 
two roots of a!' which are the basic exponents 

a i  = (T+ jw 

CY, = u- jw . 
and (A. 7) 

The roots of d' are complex when underdamped. Higher order exponents 
a! ( n  > 2) are found to be linear combinations of ai and a!,, as the higher 

order  terms of equation (A. 5) 
n 

involve exponents ai  + a!, and so on. 

For the purpose of this investigation, a three-term approximation 
(m = 2 in equation (A. i) ) is used so a! and a!, are all that is required. Thus 

x = A, + AleaiT + A2e a27 

where A i  and A, are also complex conjugate 

A i  = ai + jbi 

A2 = ai - jbi 
and 

to ensure a real solution. 
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The coefficient A0 is found from the steady state conditions ki = kz = 0 
in equation (A. 2).  Thus, 

- I g(O, A,) + A0 + EA! = P 
K (A.  10) 

becomes the steady state amplitude equation which must be solved for A,. The 
coefficients ai and bi are obtained using initial conditions 

I .  (A.  11) 

Therefore, substituting equations (A. 7) and (A.  9) into equation (A.  8) and 
evaluating x and k at T = 0 yields 

xo = A, + 2ai 
and 

ko = 2 m i  - 2wbi . 

That is, 

and 
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This three-term approximation may be expressed as a sinusoidal function 

(A. 12) 
UT x = A. + Ae sin(W7 - qj) 

where 

[ ( ~ o - A o ) ~ ( y ~ + ~ ~ )  - 1 A = - - -  
w 

For the step input with zero initial conditions 

and for the free  vibration with no initial velocity ( P  = ko = 0) 

I 

(A. 13) 

(A.  14) 

(A. 15) 

where u and w are the real and imaginary parts of the roots of a' from 
equation ( A .  6).  
shown in Figure A. 1. 

Phasor representations of equations ( A .  14) and (A. 15) are 
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FIGURE A. I. PHASOR DIAGRAMS 
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